Harvard Astronomy 201b

ARTICLE: The Physical State of Interstellar Hydrogen

In Journal Club 2013 on February 12, 2013 at 9:57 pm

The Physical State of Interstellar Hydrogen by Bengt Strömgren (1939)

Summary by Anjali Tripathi


In 1939, Bengt Strömgren published an analytic formulation for the spatial extent of ionization around early type stars.  Motivated by new H-alpha observations of sharply bound “diffuse nebulosities,” Strömgren was able to characterize these ionized regions and their thin boundaries in terms of the ionizing star’s properties and abundances of interstellar gas.  Strömgren’s work on these regions, which have come to be eponymously known as Strömgren spheres, has found longstanding use in the study of HII regions, as it provides a simple analytic approach to recover the idealized properties of such systems.

Background: Atomic Physics in Astronomy & New Observations

Danish astronomer Bengt Strömgren (1908-87) was born into a family of astronomers and educated during a period of rapid development in our understanding of the atom and modern physics.  These developments were felt strongly in Copenhagen where Strömgren studied and worked for much of his life.  At the invitation of Otto Struve, then director of Yerkes Observatory, Strömgren visited the University of Chicago from 1936 to 1938, where he encountered luminaries from across astrophysics, including Chandrasekhar and Kuiper.  With Struve and Kuiper, Strömgren worked to understand how photoionization could explain observations of a shell of gas around an F star, part of the eclipsing binary \epsilon Aurigae (Kuiper, Struve and Strömgren, 1937).  This work laid out the analytic framework for a bounded region of ionized gas around a star, which provided the theoretical foundation for Strömgren’s later work on HII regions.

The observational basis for Strömgren’s 1939 paper came from new spectroscopic measurements taken by Otto Struve.  Using the new 150-Foot Nebular Spectrograph (Struve et al, 1938) perched on a slope at McDonald Observatory, pictured below, Struve and collaborators were able to resolve sharply bound extended regions “enveloped in diffuse nebulosities” in the Balmer H-alpha emission line (Struve and Elvey, 1938).  This emission line results from recombination when electrons transition from the n = 3 to n = 2 energy level of hydrogen, after the gas was initially ionized by UV radiation from O and B stars.  Comparing these observations to those of the central parts of the Orion Nebula led the authors to estimate that the number density of hydrogen with electrons in the n=3 state is N_3 = 3 \times 10^{-21} cm^{-3}, assuming a uniform concentration of stars and neglecting self-absorption (Struve and Elvey, 1938).  From his earlier work on \epsilon Aurigae, Strömgren had an analytic framework with which to understand these observations.

150 Foot Nebular Spectrograph

Instrument used to resolve HII Regions in H-alpha (Struve et al, 1938)

Putting it together – Strömgren’s analysis

To understand the new observations quantitatively, Strömgren worked out the size of these emission nebulae by finding the extent of the ionized gas around the central star.  As in his paper with Kuiper and Struve, Strömgren considered only neutral and ionized hydrogen, assumed charge neutrality, and used the Saha equation with additional terms:

{N'' N_e \over N'} = \underbrace{{(2 \pi m_e)^{3/2} \over h^3} {2q'' \over q'} (kT)^{3/2}e^{-I/kT}}_\text{Saha} \cdot \underbrace{\sqrt{T_{el} \over T}}_\text{Temperature correction} \cdot \underbrace{R^2 \over 4 s^2}_\text{Geometrical Dilution}\cdot \underbrace{e^{-\tau_u}}_\text{Absorption}\\    N': \text{Neutral hydrogen (HI) number density}\\    N'':\text{Ionized hydrogen (HII) number density}\\    N_e:\text{Electron number density, }N_e = N''\text{ by charge neutrality}\\    x: \text{Ionization fraction}, x = N''/(N'+N'')

Here, the multiplicative factor of \sqrt{T_{el} \over T} corrects for the difference between the stellar temperature(T) and the electron temperature(T_{el}) at a distance s away from the star.  The dilution factor {R^2 \over 4 s^2}, where R is the stellar radius and s is the distance from the star, accounts for the decrease in stellar flux with increasing distance.  The factor of e^{-\tau_u}, where \tau_u is the optical depth, accounts for the reduction in the ionizing radiation due to absorption.  Taken together, this equation encapsulates the physics of a star whose photons ionize surrounding gas.  This ionization rate is balanced by the rate of recombination of ions and electrons to reform neutral hydrogen.  As a result, close to the star where there is abundant energetic flux, the gas is fully ionized, but further from the star, the gas is primarily neutral.  Strömgren’s formulation allowed him to calculate the location of the transition from ionized to neutral gas and to find the striking result that the transition region between the two is incredibly sharp, as plotted below.

Plot of ionization fraction vs distance

Plot of ionization fraction vs. distance for an HII Region (Values from Table 2 of Strömgren, 1939)

Strömgren found that the gas remains almost completely ionized until a critical distance s_0, where the ionization fraction sharply drops and the gas becomes neutral due to absorption.  This critical distance has become known as the Strömgren radius, considered to be the radius of an idealized, spherical HII region.  The distance over which the ionization fraction drops from 1 to 0 is small (~0.01 pc), corresponding to one mean free path of an ionizing photon, compared to the Strömgren radius(~100pc).  Thus Strömgren’s analytic work provided an explanation for sharply bound ionized regions with thin transition zones separating the ionized gas from the exterior neutral gas.

Strömgren also demonstrated how the critical distance depends on the total number density N, the stellar effective temperature T, and the stellar radius R:

\log{s_0} = -6.17 + {1 \over 3} \log{ \left( {2q'' \over q'} \sqrt{T_{el} \over T} \right)} - {1 \over 3} \log{a_u} - {1 \over 3} \frac{5040K}{T} I + {1 \over 2} \log{T} + {2 \over 3} \log{R} - {2 \over 3} \log{N},

where a_u is the absorption coefficient for the ionizing radiation per hydrogen atom (here assumed to be frequency independent) and s_0 is given in parsecs.  From this relation, we can see that for a given stellar radius and a fixed number density, s_0 \propto T^{1/2}, so that hotter, earlier type stars have larger ionized regions.  Plugging in numbers, Strömgren found that for a total number density of 3~cm^{-3}, a cluster of 10 O7 stars would have a critical radius of 100-150 parsecs, in agreement with estimates made by the Struve and Elvey observations.

To estimate the hydrogen number density from the H-alpha observations, Strömgren also considered the excitation of the n=3 energy levels of hydrogen.  Weighing the relative importance of various mechanisms for excitation – free electron capture, Lyman-line absorption, Balmer-line absorption, and collisions – Strömgren found that their effects on the number densities of the excited states and electron number densities were comparable.  As a result, he estimated from Struve’s and Elvey’s N_3 that the number density of hydrogen is 2-3 cm^{-3}.

Strömgren’s analysis of ionized regions around stars and neutral hydrogen in “normal regions” matched earlier theoretical work by Eddington into the nature of the ISM (Eddington, 1937).  “With great diffidence, having not yet rid myself of the tradition that ‘atoms are physics, but molecules are chemistry’,” Eddington wrote that “presumably a considerable part” of the ISM is molecular.  As a result, Strömgren outlined how his analysis for ionization regions could be modified to consider regions of molecular hydrogen dissociating, presciently leaving room for the later discovery of an abundance of molecular hydrogen.  Instead of the ionization of atomic hydrogen, Strömgren worked with the dissociation of molecular hydrogen in this analysis.   Given that the energy required to dissociate the bond of molecular hydrogen is less than that required to ionize atomic hydrogen, Stromgren’s analysis gives a model of a star surrounded by ionized atoms, which is surrounded by a sharp, thin transition region of atomic hydrogen, around which molecular hydrogen remains.

In addition to HI and HII, Strömgren also considered the ionization of other atoms and transitions.  For example, Strömgren noted that if the helium abundance was smaller than that of hydrogen, then most all of the helium will be ionized out to the boundary of the hydrogen ionization region.  From similar calculations and considering the observations of Struve and Elvey, Strömgren was able to provide an estimate of the abundance of OII, a ratio of 10^{-2}-10^{-3} oxygen atoms to each hydrogen atom.

Strömgren Spheres Today

Strömgren’s idealized formulation for ionized regions around early type stars was well received initially and  has continued to influence thinking about HII regions in the decades since.  The simplicity of Strömgren’s model and its assumptions, however, have been recognized and addressed over time.  Amongst these are concerns about the assumption of a uniformly dense medium around the star.  Optical and radio observations, however, have revealed that the surrounding nebula can have clumps and voids – far from being uniformly dense (Osterbrock and Flather, 1959).  To address this, calculations of the nebula’s density can include a ‘filling factor’ term.  Studies of the Orion Nebula (M42), pictured below, have provided examples of just such clumpiness.  M42 has also been used to study another related limitation of Strömgren’s model – the assumption of a central star surrounded by spherical symmetry.

Orion Nebula, infrared image from WISE. Credit: NASA/JPL/Caltech

Consideration of the geometry of Strömgren spheres has been augmented by blister models of the 1970s whereby a star ionizes surrounding gas but the star is at the surface or edge of a giant molecular cloud (GMC), rather than at the center of it.  As a result, ionized gas breaks out of the GMC, like a popping blister, which in turn can prompt “champagne flows” of ionized gas leaching into the surrounding medium.  In a review article of Strömgren’s work, Odell (1999) states that due to observational selection effects, many HII regions observed in the optical actually are more akin to blister regions, rather than Strömgren spheres, since Strömgren spheres formed at the center or heart of a GMC may be obscured so much that they are observable only at radio wavelengths.

In spite of its simplifying assumptions, Strömgren’s work remains relevant today.   Given its abundance, hydrogen dominates the physical processes of emission nebulae and, thus, Strömgren’s idealized model provides a good first approximation for the ionization structure, even though more species are involved than just atomic hydrogen.  Today we can enhance our understanding of these HII regions using computer codes, such as CLOUDY, to calculate the ionization states of various atoms and molecules.  We can also computationally model the  hydrodynamics  of shocks radiating outwards from the star and use spectral synthesis codes to produce mock spectra.  From these models and the accumulated wealth of observations over time, we have come to accept that dense clouds of molecular gas, dominated with molecular hydrogen, are the sites of star formation.  Young O and B-type stars form out of clumps in these clouds and their ionizing radiation will develop into an emission nebula with ionized atomic hydrogen, sharply bound from the surrounding neutral cloud.  As the stars age and the shocks race onwards, the HII regions will evolve.  What remains, however, is Strömgren’s work which provides a simple analytic basis for understanding the complex physics of HII regions.

Selected references (in order of appearance in this article)

Strömgren, “The Physical State of Interstellar Hydrogen”, ApJ (1939)

Kuiper et al, “The Interpretation of \epsilon  Aurigae”, ApJ (1937)

Struve et al, “The 150-Foot Nebular Spectrograph of the McDonald Observatory”, ApJ (1938)

Struve and Elvey,”Emission Nebulosities in Cygnus and Cepheus”, ApJ (1938)

Eddington, “Interstellar Matter”, The Observatory (1937)

Osterbrock and Flather, “Electron Densities in the Orion Nebula. II”, ApJ (1959)

O’Dell, “Strömgren Spheres”, ApJ (1999)

  1. […] Stromgren sphere (JC 2013) is a simplified analysis of the size of HII regions. Massive O and B stars emit many high-energy […]

  2. […] values for the above variables are , and , implying Stromgren radii of 10 to 100 pc. See the journal club (2013) article for discussion of Stromgren’s seminal 1939 […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: